УДК 51-37

DOI: 10.30987/conferencearticle 5c19e69a812068.88718135

А.А. Викторов, Л.Н. Васильева

(г. Чебоксары, Чувашский государственный университет им. И.Н. Ульянова)

РАЗРАБОТКА КОНСОЛЬНОГО ПРИЛОЖЕНИЯ ДЛЯ АРИФМЕТИЧЕСКИХ ОПЕРАЦИЙ НАД КОМПЛЕКСНЫМИ ЧИСЛАМИ

Рассмотрен пример написания консольной программы для выполнения арифметических действий над комплексными числами в алгебраической форме записи на одном из высших языков программирования.

The work deals with writing a console program for performing arithmetic operations on complex numbers in the algebraic form of writing in one of the highest programming languages.

Ключевые слова: алгебра, информатика и информационные технологии в радиоэлектронике, калькулятор, компилятор, комплексные числа, консольное приложение, программирование, C++.

Keywords: algebra, computer science and information technology in electronics, calculator, compiler, complex numbers, console application, programming, C + +.

В практической деятельности инженер сталкивается с комплексными числами. При этом приходится пользоваться вычислительными средствами, такими, как всевозможные онлайн — калькуляторы [1] или приложения [2,3], призванные облегчить обработку данных [4,5]. Вместе с тем не каждый задумывался о том, как может быть устроен код вычислительного инструмента. Для того, чтобы разобраться в этом, будет достаточно знаний одного из языков программирования и онлайн — компилятора. В качестве первого был выбран C++ — один из самых популярных языков программирования общего назначения [6]. Для реализации выбран калькулятор с подробным решением сложения, вычитания, умножения и деления комплексных чисел в алгебраической форме записи.

Для создания меню калькулятора были использованы оператор выбора switch и оператор условия if. Ввод действительной и мнимой части комплексного числа производится с помощью выведения на консоль соответствующей фразы — $Enter\ real\ (imaginary)\ part\ of\ first\ (second)\ number$ [1]. После завершения ввода и нажатия клавиши $Enter\$ осуществляется вывод на экран результата работы алгоритма. На рис.1 представлен пример работы алгоритма по вычислению суммы двух комплексных чисел в алгебраической форме записи: $z_1 = 1 + 2i$ и $z_2 = -3 + 4i$.

```
П
        1 - Calculate complex numbers (a+ib)
П
        0 - Nothing
н
П
        Please Select:1
Н
П
        1 - Add complex numbers
                                        (+)
н
        2 - Subtract complex numbers
                                        (-)
П
        3 - Multiplying complex numbers (*)
П
        4 - Divide complex numbers
                                        (/)
П
Н
        Please Select:1
П
П
        Enter real part of first number:
        Enter imaginary part of first number:
| |
                                                -2
П
       Enter real part of second number:
                                                -3
        Enter imaginary part of second number: 4
        1-2i+(-3+4i)=(1-3)+(-2+4)i=-2+2i
Н
П
```

Puc.1. Пример работы консольного калькулятора при сложении комплексных чисел

На рис.2 представлен пример вычисления калькулятором разности двух комплексных чисел: $z_1 = 12.3 + 34.5i$ и $z_2 = 5.67 + 7.89i$.

```
||------|
|| 12.3+34.5i-(5.67+7.89i)=(12.3-5.67)+(34.5-7.89)i=6.63+26.61i
```

Рис. 2. Пример вычисления разности комплексных чисел

На рис.3 представлен пример вычисления калькулятором произведения двух комплексных чисел: $z_1 = -12 + 3i$ и $z_2 = -45 + 6i$.

```
||-----
|| (-12+3i)*(-45+6i)=12*45-12*6i-45*3i+3*6i^2=540-72i-135i-18=522-207i
||
```

Рис. 3. Пример вычисления произведения комплексных чисел

На рис.4 представлен пример вычисления калькулятором частного двух комплексных чисел: $z_1 = -9 + 8i$ и $z_2 = -7 - 6i$.

```
| | (-9+8i) / (-7-6i) = [ (-9+8i) * (-7+6i) ] / [ (-7-6i) * (-7+6i) ] = 
| | (9*7-9*6i-7*8i+8*6i^2) / (7*7+6*6) = (63-54i-56i-48) / 
| | / (49+36) = (15-110i) / 85=0.176471-1.29412i | |
```

Рис.4. Пример вычисления разности комплексных чисел.

В случае потери смысла при делении на 0 будет выведено соответствующее предупреждение (рис. 5).

```
н
                                                                 (1+2i)/(0+0i) =
                          You can not divide by zero.
                                                                select another value of second complex number
                          Рис.5. Предупреждение в случае деления на 0
                         Ниже приведена часть кода, отвечающая за деление комплексных чисел:
cout << real1:
                         if(complex1>=0){cout<<"+"<<complex1:}else{cout<<complex1:}
                             cout<<"i)*(":
                             cout << real2;
                          if(conjugate>=0){cout<<"+"<<conjugate;}else{cout<<conjugate;}
                             cout<<"i)]/[(":
                             cout << real2:
                         if(complex2>=0){cout<<"+"<<complex2;}else{cout<<complex2;}
                             cout<<"i)*(";
                             cout << real2:
                         if(conjugate>=0){cout<<"+"<<conjugate;}else{cout<<conjugate;}
                                cout << "i) = n"://end of part 2
                           real12=real1*conjugate://----//
                           real22=complex1*conjugate;//----//
                                cout<<"||\t=(";
if(real11>=0&&((real1>0&&real2>0)||(real1<0&&real2<0)||(real1==0&&real2>0)||(real1>0&&real2=
=0)))
                            {cout << fabs(real1) << "*" << fabs(real2);}
                        else if((real1>0&&real2<0)||(real1<0&&real2>0)||real1==0||real2==0)
                            {cout<<"-"<<fabs(real1)<<"*"<<fabs(real2);}
>0&&conjugate==0)))
                            {cout<<"+"<<fabs(real1)<<"*"<<fabs(conjugate);}
                         else if((real1>0&&conjugate<0)||(real1<0&&conjugate>0)||real1==0||conjugate==0)
                            {cout<<"-"<<fabs(real1)<<"*"<<fabs(conjugate):}
                               cout<<"i":
if(real21>=0&&((real2>0&&complex1>0))|(real2<0&&complex1<0))|(real2==0&&complex1>0))|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(real2=0,0,0)|(
2>0&&complex1==0)))
                            {cout<<"+"<<fabs(real2)<<"*"<<fabs(complex1):}
if(real21 \le 0\&\&((real2>0\&\&complex1<0))||(real2<0\&\&complex1>0)|| real2==0||(complex1==0))|| real2==0||(complex1==0)|| real2==0||(complex1==0)|| real2==0||(complex1==0)|| real2==0||(complex1>0)|| real2==0||(complex1==0)|| real2==0|| real2==0||(complex1==0)|| real2==0||(complex1==0)|| real2==0|| real2==0||(complex1==0)|| real2==0
                            {cout<<"-"<<fabs(real2)<<"*"<<fabs(complex1);}
                                cout<<"i";
if(real22>=0&&((complex1>0&&conjugate>0)||(complex1<0&&conjugate<0)||(complex1>0&&conjugate<0)||
ate==0)\|(\text{complex1}==0\&\&\text{conjugate}>0)))
                            {cout<<"+"<<fabs(complex1)<<"*"<<fabs(conjugate):}
if((real22<=0)&&((complex1>0&&conjugate<0)||(complex1<0&&conjugate>0)||complex1==0||conjug
ate==0)
                            {cout<<"-"<<fabs(complex1)<<"*"<<fabs(conjugate);}
                                cout << "i^2)/(":
cout<<fabs(real2)<<"*"<<fabs(real2)<<"+"<<fabs(complex2)<<"series"</fabs(complex2)<<"series"</fabs(complex2)<<"series"</fabs(complex2)<<"series"</fabs(complex2)<<"series"</fabs(complex2)<<"series"</fabs(complex2)<<"series"</fabs(complex2)<<"series"</fabs(complex2)<<"series"</fabs(complex2)<<"series"</fabs(complex2)</"series"</fabs(complex2)</"series"</table>
if(real11>=0\&\&((real1>0\&\&real2>0))||(real1<0\&\&real2<0)||(real1==0\&\&real2>0)||(real1>0\&\&real2=0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>0\&\&real2>0)||(real1>
=0)))
                            {cout<<fabs(real11);}
                         else if(real11 \le 0 \& ((real1 > 0 \& real2 \le 0)) | (real1 < 0 \& real2 \ge 0)) | (real1 = 0) | (real1 =
                            {cout<<"-"<<fabs(real11);}
```

```
if(real12>=0&&((real1>0&&coniugate>0)||(real1<0&&coniugate<0)||(real1==0&&coniugate>0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0,0,0)||(real1=0
>0&&conjugate==0)))
                                                  {cout<<"+"<<fabs(real12):}
if(real12<=0&&((real1>0&&conjugate<0))|(real1<0&&conjugate>0)||real1==0||conjugate==0))
                                                {cout<<"-"<<fabs(real12);}
                                                   cout<<"i":
if(real21>=0&&((real2>0&&complex1>0))|(real2<0&&complex1<0))|(real2==0&&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(real2==0&complex1>0)|(rea
2 > 0 \& \& complex 1 = = 0)))
                                                  {cout<<"+"<<fabs(real21):}
                                           else
if(real21<=0&&((real2>0&&complex1<0))|(real2<0&&complex1>0))||real2==0||complex1==0))
                                                {cout << "-" << fabs(real 21);}
                                                   cout<<"i":
                                                real22=real22*(-1)://----//
if(real 22 \ge 0 \& \& ((complex 1 \ge 0 \& \& conjugate \le 0) || (complex 1 \le 0 \& \& conjugate \ge 0) || (complex 1 = 0 \& \& conjugate \ge 0) || (complex 1 \le 0 \& \& conjugate \ge 0) || (complex 1 \le 0 \& \& conjugate \ge 0) || (complex 1 \le 0 \& \& conjugate \ge 0) || (complex 1 \le 0 \& \& conjugate \ge 0) || (complex 1 \le 0 \& \& conjugate \ge 0) || (complex 1 \le 0 \& \& conjugate \ge 0) || (complex 1 \le 0 \& \& conjugate \ge 0) || (complex 1 \le 0 \& \& conjugate \ge 0) || (complex 1 \le 0 \& \& conjugate \ge 0) || (complex 1 \le 0 \& \& conjugate \ge 0) || (complex 1 \le 0 \& \& conjugate \ge 0) || (complex 1 \le 0 \& \& conjugate \ge 0) || (complex 1 \le 0 \& \& conjugate \ge 0) || (complex 1 \le 0 \& \& conjugate \ge 0) || (complex 1 \le 0 \& \& conjugate \ge 0) || (complex 1 \le 0 \& \& conjugate \ge 0) || (complex 1 \le 0 \& \& conjugate \ge 0) || (complex 1 \le 0 \& \& conjugate \ge 0) || (complex 1 \le 0 \& \& conjugate \ge 0) || (complex 1 \le 0 \& \& conjugate \ge 0) || (complex 1 \le 0 \& \& conjugate \ge 0) || (complex 1 \le 0 \& \& conjugate \ge 0) || (complex 1 \le 0 \& \& conjugate \ge 0) || (complex 1 \le 0 \& \& conjugate \ge 0) || (complex 1 \le 0 \& \& conjugate \ge 0) || (complex 1 \le 0 \& \& conjugate \ge 0) || (complex 1 \le 0 \& \& conjugate \ge 0) || (complex 1 \le 0 \& \& conjugate \ge 0) || (complex 1 \le 0 \& \& conjugate \ge 0) || (complex 1 \le 0 \& \& conjugate \ge 0) || (complex 1 \le 0 \& \& conjugate \ge 0) || (complex 1 \le 0 \& \& conjugate \ge 0) || (complex 1 \le 0 \& \& conjugate \ge 0) || (complex 1 \le 0 \& \& conjugate \ge 0) || (complex 1 \le 0 \& \& conjugate \ge 0) || (complex 1 \le 0 \& \& conjugate \ge 0) || (complex 1 \le 0 \& \& conjugate \ge 0) || (complex 1 \le 0 \& \& conjugate \ge 0) || (complex 1 \le 0 \& \& conjugate \ge 0) || (complex 1 \le 0 \& \& conjugate \ge 0) || (complex 1 \le 0 \& \& conjugate \ge 0) || (complex 1 \le 0 \& \& conjugate \ge 0) || (complex 1 \le 0 \& \& conjugate \ge 0) || (complex 1 \le 0 \& \& conjugate \ge 0) || (complex 1 \le 0 \& \& conjugate \ge 0) || (complex 1 \le 0 \& \& conjugate \ge 0) || (complex 1 \le 0 \& \& conjugate \ge 0) || (complex 1 \le 0 \& \& conjugate \ge 0) || (complex 1 \le 0 \& \& conjugate \ge 0) || (complex 1 \le 0 \& \& conjugate \ge 0) || (complex 1 \le 0 \& \& conjugate \ge 0) || (complex 1 \le 0 \& \& conjuga
gate<0)||(complex1<0&&conjugate==0)))
                                                  {cout<<"+"<<fabs(real22):}
if(real22<=0&&((complex1>0&&conjugate>0)||(complex1<0&&conjugate<0)||complex1==0||conjugate
e = = 0)
                                                {cout<<"-"<<fabs(real22):}
                                                   cout<<")/\n";
                                                   cout<<"|\\t/(":
                                                   cout<<real2*real2<<"+"<<complex2*complex2<<")=("://end of part 4
```

Таким образом, для создания консольного калькулятора необходимо обладать знаниями в области алгебры и информатики, а также уметь применять их на практике при программировании в среде разработки проекта.

Список литературы

- 1. *Епихин, В.Е.* Комплексные числа: методическая разработка для учащихся заочного отделения МММФ / В. Е. Епихин. М.: Изд-во центра прикладных исследований при механико-математическом факультете МГУ, 2008. С.3–6.
- 2. Полутова, Н.А. Перевод вещественных чисел из восьмеричной системы в шестнадцатеричную и обратно/ Н.А. Полутова, Л.Н. Васильева // Динамика нелинейных дискретных электротехнических и электронных систем: материалы XII Всероссийской научно-технической конференции. 2017. С. 378-382.
- 3. *Ченчугов, В.А.* Разработка приложения "Представление вещественных чисел в памяти ЭВМ" / В.А. Чепчугов, Л.Н.Васильева // Сборник научных трудов молодых ученых и специалистов Чебоксары, 2017. С. 92-96.
- 4. Викторов, А.А. Анализ использования математических программных продуктов для изучения свойств замечательных кривых и их построение на плоскости. / А.А. Викторов, И.И. Ильина // Информатика и вычислительная техника. Сборник научных трудов. Чебоксары, 2018. С. 61-66.
- 5. Викторов, А.А. Применение средств компьютерной графики при изучении дифференциальных уравнений в среде Matcad./ А.А. Викторов, И.И. Ильина // Математические модели и их приложения. Сборник научных трудов.—Чебоксары, 2018.—Вып. 20.—С. 118-122.
- 6. С++ Википедия URL: https://ru.wikipedia.org/wiki/С++ (дата обращения: 20.10.2018).

Материал поступил в редколлегию 21.10.18.